Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 13(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38668253

RESUMO

Immune response against malaria and the clearance of Plasmodium parasite relies on germinal-center-derived B cell responses that are temporally and histologically layered. Despite a well-orchestrated germinal center response, anti-Plasmodium immune response seldom offers sterilizing immunity. Recent studies report that certain pathophysiological features of malaria such as extensive hemolysis, hypoxia as well as the extrafollicular accumulation of short-lived plasmablasts may contribute to this suboptimal immune response. In this review, we summarize some of those studies and attempt to connect certain host intrinsic features in response to the malarial disease and the resultant gaps in the immune response.

2.
Viruses ; 15(6)2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37376652

RESUMO

Macrophages are critical in the pathogenesis of a diverse group of viral pathogens, both as targets of infection and for eliciting primary defense mechanisms. Our prior in vitro work identified that CD40 signaling in murine peritoneal macrophages protects against several RNA viruses by eliciting IL-12, which stimulates the production of interferon gamma (IFN-γ). Here, we examine the role of CD40 signaling in vivo. We show that CD40 signaling is a critical, but currently poorly appreciated, component of the innate immune response using two distinct infectious agents: mouse-adapted influenza A virus (IAV, PR8) and recombinant VSV encoding the Ebola virus glycoprotein (rVSV-EBOV GP). We find that stimulation of CD40 signaling decreases early IAV titers, whereas loss of CD40 elevated early titers and compromised lung function by day 3 of infection. Protection conferred by CD40 signaling against IAV is dependent on IFN-γ production, consistent with our in vitro studies. Using rVSV-EBOV GP that serves as a low-biocontainment model of filovirus infection, we demonstrate that macrophages are a CD40-expressing population critical for protection within the peritoneum and T-cells are the key source of CD40L (CD154). These experiments reveal the in vivo mechanisms by which CD40 signaling in macrophages regulates the early host responses to RNA virus infection and highlight how CD40 agonists currently under investigation for clinical use may function as a novel class of broad antiviral treatments.


Assuntos
Antígenos CD40 , Infecções por Vírus de RNA , Vírus de RNA , Animais , Camundongos , Antígenos CD40/metabolismo , Interferon gama , Macrófagos , Infecções por Vírus de RNA/imunologia
3.
Pattern Anal Appl ; 26(1): 19-37, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35873879

RESUMO

In this paper, a subsequence time-series clustering algorithm is proposed to identify the strongly coupled aftershocks sequences and Poissonian background activity from earthquake catalogs of active regions. The proposed method considers the inter-event time statistics between the successive pair of events for characterizing the nature of temporal sequences and observing their relevance with earthquake epicenters and magnitude information simultaneously. This approach categorizes the long-earthquake time series into the finite meaningful temporal sequences and then applies the clustering mechanism to the selective sequences. The proposed approach is built on two phases: (1) a Gaussian kernel-based density estimation for finding the optimal subsequence of given earthquake time-series, and (2) inter-event time ( Δ t ) and distance-based observation of each subsequence for checking the presence of highly correlated aftershock sequences (hot-spots) in it. The existence of aftershocks is determined based on the coefficient of variation (COV). A sliding temporal window on Δ t with earthquake's magnitude M is applied on the selective subsequence to filter out the presence of time-correlated events and make the meaningful time stationary Poissonian subsequences. This proposed approach is applied to the regional Sumatra-Andaman (2000-2021) and worldwide ISC-GEM (2000-2016) earthquake catalog. Simulation results indicate that meaningful subsequences (background events) can be modeled by a homogeneous Poisson process after achieving a linear cumulative rate and time-independent λ in the exponential distribution of Δ t . The relations C O V a ( T ) > C O V o ( T ) > ( C O V b ( T ) ≈ 1 ) and C O V a ( d ) > C O V o ( d ) > C O V b ( d ) are achieved for both studied catalogs. Comparative analysis justifies the competitive performance of the proposed approach to the state-of-art approaches and recently introduced methods.

4.
Cell Rep ; 40(3): 111098, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858541

RESUMO

Malaria is a devastating disease impacting over half of the world's population. Plasmodium parasites that cause malaria undergo obligatory development and replication in hepatocytes before infecting red blood cells and initiating clinical disease. While type I interferons (IFNs) are known to facilitate innate immune control to Plasmodium in the liver, how they do so has remained unresolved, precluding the manipulation of such responses to combat malaria. Utilizing transcriptomics, infection studies, and a transgenic Plasmodium strain that exports and traffics Cre recombinase, we show that direct type I IFN signaling in Plasmodium-infected hepatocytes is necessary to control malaria. We also show that the majority of infected hepatocytes naturally eliminate Plasmodium infection, revealing the potential existence of anti-malarial cell-autonomous immune responses in such hepatocytes. These discoveries challenge the existing paradigms in Plasmodium immunobiology and are expected to inspire anti-malarial drugs and vaccine strategies.


Assuntos
Antimaláricos , Interferon Tipo I , Malária , Plasmodium , Animais , Hepatócitos , Humanos , Imunidade Inata , Fígado , Esporozoítos
5.
Eye Contact Lens ; 48(6): 272-275, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35703836

RESUMO

PURPOSE: To report the clinical profile and treatment outcomes of patients with culture-positive Acremonium keratitis. METHODS: This is a retrospective observational study. Medical records of all patients treated in a tertiary eye hospital for culture positive infective keratitis from March 2016 to February 2021 were screened, of which those positive for Acremonium species on fungal culture were reviewed. Demographic details, clinical presentation, clinical course, treatment given, total follow-up duration, time taken for ulcer to heal, scar size, and final visual acuity in the last follow-up were recorded. RESULTS: Fifty three cases of fungal keratitis caused by Acremonium species were identified, 22 females and 31 males, with average age of 46.39±18.64 years. The mean duration of symptoms being 54.47±50 days. Only five patients had a history of trauma with vegetative matter. Clinical presentation of patients showed a large number of variations, with 2 patients presenting as peripheral ulcerative keratitis and 1 with epithelial plaque. The mean visual acuity of patients at presentation was 2.43±0.46 logMAR units. Thirty-three of 53 patients presented with perforated corneal ulcer and underwent penetrating keratoplasty; 20 patients were medically managed on topical voriconazole 1%, natamycin 5%, and oral voriconazole. The mean duration of healing of epithelial defect was 95±60.62 days (range 60-165 days). CONCLUSION: Acremonium keratitis has a long and indolent course. A prolonged combination therapy of natamycin and voriconazole seems to be effective in the management. A delay in the diagnosis of Acremonium keratitis often leads to clinical worsening requiring keratoplasty.


Assuntos
Acremonium , Úlcera da Córnea , Infecções Oculares Fúngicas , Ceratite , Adulto , Idoso , Antifúngicos/uso terapêutico , Úlcera da Córnea/diagnóstico , Úlcera da Córnea/tratamento farmacológico , Infecções Oculares Fúngicas/diagnóstico , Infecções Oculares Fúngicas/tratamento farmacológico , Infecções Oculares Fúngicas/microbiologia , Feminino , Humanos , Ceratite/diagnóstico , Ceratite/tratamento farmacológico , Ceratite/microbiologia , Masculino , Pessoa de Meia-Idade , Natamicina/uso terapêutico , Resultado do Tratamento , Voriconazol/uso terapêutico
6.
Cell Rep ; 37(5): 109956, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731605

RESUMO

Circulating memory CD8 T cell trafficking and protective capacity during liver-stage malaria infection remains undefined. We find that effector memory CD8 T cells (Tem) infiltrate the liver within 6 hours after malarial or bacterial infections and mediate pathogen clearance. Tem recruitment coincides with rapid transcriptional upregulation of inflammatory genes in Plasmodium-infected livers. Recruitment requires CD8 T cell-intrinsic LFA-1 expression and the presence of liver phagocytes. Rapid Tem liver infiltration is distinct from recruitment to other non-lymphoid tissues in that it occurs both in the absence of liver tissue resident memory "sensing-and-alarm" function and ∼42 hours earlier than in lung infection by influenza virus. These data demonstrate relevance for Tem in protection against malaria and provide generalizable mechanistic insights germane to control of liver infections.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Fígado/imunologia , Malária/imunologia , Plasmodium berghei/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/microbiologia , Linfócitos T CD8-Positivos/parasitologia , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Parasita , Listeria monocytogenes/imunologia , Listeria monocytogenes/patogenicidade , Listeriose/sangue , Listeriose/imunologia , Listeriose/microbiologia , Fígado/metabolismo , Fígado/microbiologia , Fígado/parasitologia , Antígeno-1 Associado à Função Linfocitária/metabolismo , Malária/sangue , Malária/parasitologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Carga Parasitária , Fagócitos/imunologia , Fagócitos/metabolismo , Fagócitos/microbiologia , Fagócitos/parasitologia , Plasmodium berghei/patogenicidade , Fatores de Tempo
7.
Elife ; 102021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34143731

RESUMO

Protective lung tissue-resident memory CD8+T cells (Trm) form after influenza A virus (IAV) infection. We show that IAV infection of mice generates CD69+CD103+and other memory CD8+T cell populations in lung-draining mediastinal lymph nodes (mLNs) from circulating naive or memory CD8+T cells. Repeated antigen exposure, mimicking seasonal IAV infections, generates quaternary memory (4M) CD8+T cells that protect mLN from viral infection better than 1M CD8+T cells. Better protection by 4M CD8+T cells associates with enhanced granzyme A/B expression and stable maintenance of mLN CD69+CD103+4M CD8+T cells, vs the steady decline of CD69+CD103+1M CD8+T cells, paralleling the durability of protective CD69+CD103+4M vs 1M in the lung after IAV infection. Coordinated upregulation in canonical Trm-associated genes occurs in circulating 4M vs 1M populations without the enrichment of canonical downregulated Trm genes. Thus, repeated antigen exposure arms circulating memory CD8+T cells with enhanced capacity to form long-lived populations of Trm that enhance control of viral infections of the mLN.


Assuntos
Linfócitos T CD8-Positivos , Linfonodos , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Antígenos CD/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Feminino , Vírus da Influenza A/imunologia , Pulmão/citologia , Pulmão/imunologia , Linfonodos/citologia , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Transcriptoma/genética
8.
J Exp Med ; 218(6)2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33830176

RESUMO

Antimalarial antibody responses are essential for mediating the clearance of Plasmodium parasite-infected RBCs from infected hosts. However, the rapid appearance of large numbers of plasmablasts in Plasmodium-infected hosts can suppress the development and function of durable humoral immunity. Here, we identify that the formation of plasmablast populations in Plasmodium-infected mice is mechanistically linked to both hemolysis-induced exposure of phosphatidylserine on damaged RBCs and inflammatory cues. We also show that virus and Trypanosoma infections known to trigger hemolytic anemia and high-grade inflammation also induce exuberant plasmablast responses. The induction of hemolysis or administration of RBC membrane ghosts increases plasmablast differentiation. The phosphatidylserine receptor Axl is critical for optimal plasmablast formation, and blocking phosphatidylserine limits plasmablast expansions and reduces Plasmodium parasite burden in vivo. Our findings support that strategies aimed at modulating polyclonal B cell activation and phosphatidylserine exposure may improve immune responses against Plasmodium parasites and potentially other infectious diseases that are associated with anemia.


Assuntos
Diferenciação Celular/imunologia , Hemólise/imunologia , Fosfatidilserinas/imunologia , Plasmócitos/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Antimaláricos/imunologia , Linfócitos B/imunologia , Linfócitos B/parasitologia , Células Cultivadas , Eritrócitos/imunologia , Eritrócitos/parasitologia , Humanos , Imunidade Humoral/imunologia , Malária/imunologia , Malária/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmócitos/parasitologia , Plasmodium yoelii/imunologia
9.
Microbes Infect ; 23(4-5): 104807, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33684519

RESUMO

Humoral immunity is critical for limiting Plasmodium parasite infections and the severity of malaria. Naturally acquired immunity against malaria occurs inefficiently and protection is relatively short-lived. Here we review recent advances and explore emerging hypotheses regarding the molecular and cellular pathways that regulate Plasmodium parasite-specific B cell responses and durable anti-malarial humoral immunity.


Assuntos
Imunidade Humoral , Malária/imunologia , Humanos , Fatores de Tempo
10.
PLoS Pathog ; 17(2): e1009288, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33529242

RESUMO

Immunity against malaria depends on germinal center (GC)-derived antibody responses that are orchestrated by T follicular helper (TFH) cells. Emerging data show that the regulatory cytokine IL-10 plays an essential role in promoting GC B cell responses during both experimental malaria and virus infections. Here we investigated the cellular source and temporal role of IL-10, and whether IL-10 additionally signals to CD4 T-cells to support anti-Plasmodium humoral immunity. Distinct from reports of virus infection, we found that IL-10 was expressed by conventional, Foxp3-negative effector CD4 T cells and functioned in a B cell-intrinsic manner only during the first 96 hours of Plasmodium infection to support humoral immunity. The critical functions of IL-10 manifested only before the orchestration of GC responses and were primarily localized outside of B cell follicles. Mechanistically, our studies showed that the rapid and transient provision of IL-10 promoted B cell expression of anti-apoptotic factors, MHC class II, CD83, and cell-cell adhesion proteins that are essential for B cell survival and interaction with CD4 T cells. Together, our data reveal temporal features and mechanisms by which IL-10 critically supports humoral immunity during blood-stage Plasmodium infection, information that may be useful for developing new strategies designed to lessen the burden of malaria.


Assuntos
Formação de Anticorpos/imunologia , Antimaláricos/imunologia , Linfócitos T CD4-Positivos/imunologia , Interleucina-10/metabolismo , Ativação Linfocitária/imunologia , Malária/imunologia , Plasmodium yoelii/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , Malária/metabolismo , Malária/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo
11.
Nat Immunol ; 21(7): 790-801, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32424361

RESUMO

Plasmodium parasite-specific antibodies are critical for protection against malaria, yet the development of long-lived and effective humoral immunity against Plasmodium takes many years and multiple rounds of infection and cure. Here, we report that the rapid development of short-lived plasmablasts during experimental malaria unexpectedly hindered parasite control by impeding germinal center responses. Metabolic hyperactivity of plasmablasts resulted in nutrient deprivation of the germinal center reaction, limiting the generation of memory B cell and long-lived plasma cell responses. Therapeutic administration of a single amino acid to experimentally infected mice was sufficient to overcome the metabolic constraints imposed by plasmablasts and enhanced parasite clearance and the formation of protective humoral immune memory responses. Thus, our studies not only challenge the current model describing the role and function of blood-stage Plasmodium-induced plasmablasts but they also reveal new targets and strategies to improve anti-Plasmodium humoral immunity.


Assuntos
Imunidade Humoral , Malária/imunologia , Plasmócitos/metabolismo , Plasmodium falciparum/imunologia , Adolescente , Adulto , Aminoácidos/administração & dosagem , Aminoácidos/metabolismo , Animais , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Anticorpos Antiprotozoários/metabolismo , Antimaláricos/administração & dosagem , DNA de Protozoário/isolamento & purificação , Modelos Animais de Doenças , Centro Germinativo/citologia , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Interações Hospedeiro-Parasita/imunologia , Humanos , Malária/sangue , Malária/tratamento farmacológico , Malária/parasitologia , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Nutrientes/metabolismo , Plasmócitos/imunologia , Plasmócitos/parasitologia , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Estudo de Prova de Conceito , Adulto Jovem
12.
Cell Rep ; 30(12): 4041-4051.e4, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209467

RESUMO

During the 2013-2016 Ebola virus (EBOV) epidemic, a significant number of patients admitted to Ebola treatment units were co-infected with Plasmodium falciparum, a predominant agent of malaria. However, there is no consensus on how malaria impacts EBOV infection. The effect of acute Plasmodium infection on EBOV challenge was investigated using mouse-adapted EBOV and a biosafety level 2 (BSL-2) model virus. We demonstrate that acute Plasmodium infection protects from lethal viral challenge, dependent upon interferon gamma (IFN-γ) elicited as a result of parasite infection. Plasmodium-infected mice lacking the IFN-γ receptor are not protected. Ex vivo incubation of naive human or mouse macrophages with sera from acutely parasitemic rodents or macaques programs a proinflammatory phenotype dependent on IFN-γ and renders cells resistant to EBOV infection. We conclude that acute Plasmodium infection can safeguard against EBOV by the production of protective IFN-γ. These findings have implications for anti-malaria therapies administered during episodic EBOV outbreaks in Africa.


Assuntos
Resistência à Doença/imunologia , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/complicações , Doença pelo Vírus Ebola/imunologia , Interferon gama/metabolismo , Malária/complicações , Plasmodium falciparum/fisiologia , Animais , Feminino , Glicoproteínas/metabolismo , Doença pelo Vírus Ebola/prevenção & controle , Macrófagos Peritoneais/patologia , Malária/parasitologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Receptor de Interferon alfa e beta/metabolismo , Receptores de Interferon/deficiência , Receptores de Interferon/metabolismo , Vesiculovirus/fisiologia
13.
Cell Host Microbe ; 25(4): 565-577.e6, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30905437

RESUMO

Plasmodium sporozoites inoculated by mosquitoes migrate to the liver and infect hepatocytes prior to release of merozoites that initiate symptomatic blood-stage malaria. Plasmodium parasites are thought to be restricted to hepatocytes throughout this obligate liver stage of development, and how liver-stage-expressed antigens prime productive CD8 T cell responses remains unknown. We found that a subset of liver-infiltrating monocyte-derived CD11c+ cells co-expressing F4/80, CD103, CD207, and CSF1R acquired parasites during the liver stage of malaria, but only after initial hepatocyte infection. These CD11c+ cells found in the infected liver and liver-draining lymph nodes exhibited transcriptionally and phenotypically enhanced antigen-presentation functions and primed protective CD8 T cell responses against Plasmodium liver-stage-restricted antigens. Our findings highlight a previously unrecognized aspect of Plasmodium biology and uncover the fundamental mechanism by which CD8 T cell responses are primed against liver-stage malaria antigens.


Assuntos
Apresentação de Antígeno , Linfócitos T CD8-Positivos/imunologia , Hepatócitos/parasitologia , Imunidade Celular , Fígado/imunologia , Malária/imunologia , Monócitos/parasitologia , Antígeno CD11c/análise , Fígado/parasitologia , Monócitos/química , Monócitos/imunologia , Plasmodium/imunologia
14.
JCI Insight ; 3(11)2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29875310

RESUMO

The nasal mucosa is an important component of mucosal immunity. Immunogenic particles in inspired air are known to activate the local nasal mucosal immune system and can lead to sinonasal inflammation; however, little is known about the effect of this activation on the lung immune environment. Here, we showed that nasal inoculation of murine coronavirus (CoV) in the absence of direct lung infection primes the lung immune environment by recruiting activated monocytes (Ly6C+ inflammatory monocytes) and NK cells into the lungs. Unlike infiltration of these cells into directly infected lungs, a process that requires type I IFN signaling, nasally induced infiltration of Ly6C+ inflammatory monocytes into the lungs is IFN-I independent. These activated macrophages ingested antigen and migrated to pulmonary lymph nodes, and enhanced both innate and adaptive immunity after heterologous virus infection. Clinically, such nasal-only inoculation of MHV-1 failed to cause pneumonia but significantly reduced mortality and morbidity of lethal pneumonia caused by severe acute respiratory syndrome CoV (SARS-CoV) or influenza A virus. Together, the data indicate that the nose and upper airway remotely prime the lung immunity to protect the lungs from direct viral infections.


Assuntos
Vírus da Hepatite Murina/imunologia , Mucosa Nasal/imunologia , Pneumonia Viral/imunologia , Vacinas contra Hepatite Viral/administração & dosagem , Administração Intranasal , Animais , Modelos Animais de Doenças , Feminino , Humanos , Imunidade Inata , Imunidade nas Mucosas , Vírus da Influenza A/imunologia , Vírus da Influenza A/patogenicidade , Pulmão/citologia , Pulmão/imunologia , Pulmão/virologia , Ativação de Macrófagos , Macrófagos/imunologia , Camundongos , Mucosa Nasal/citologia , Mucosa Nasal/virologia , Pneumonia Viral/mortalidade , Pneumonia Viral/prevenção & controle , Pneumonia Viral/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade
16.
Immunity ; 48(2): 299-312.e5, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29396160

RESUMO

Chronic viral infections remain a global health concern. The early events that facilitate viral persistence have been linked to the activity of the immunoregulatory cytokine IL-10. However, the mechanisms by which IL-10 facilitates the establishment of chronic infection are not fully understood. Herein, we demonstrated that the antigen sensitivity of CD8+ T cells was decreased during chronic infection and that this was directly mediated by IL-10. Mechanistically, we showed that IL-10 induced the expression of Mgat5, a glycosyltransferase that enhances N-glycan branching on surface glycoproteins. Increased N-glycan branching on CD8+ T cells promoted the formation of a galectin 3-mediated membrane lattice, which restricted the interaction of key glycoproteins, ultimately increasing the antigenic threshold required for T cell activation. Our study identified a regulatory loop in which IL-10 directly restricts CD8+ T cell activation and function through modification of cell surface glycosylation allowing the establishment of chronic infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Interleucina-10/fisiologia , Animais , Antígenos Virais/imunologia , Feminino , Galectinas/fisiologia , Glicosilação , Vírus da Coriomeningite Linfocítica/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , N-Acetilglucosaminiltransferases/fisiologia , Receptores de Antígenos de Linfócitos T/fisiologia , Transdução de Sinais/fisiologia
17.
Cell Rep ; 21(7): 1839-1852, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29141217

RESUMO

Effector T cells exhibiting features of either T helper 1 (Th1) or T follicular helper (Tfh) populations are essential to control experimental Plasmodium infection and are believed to be critical for resistance to clinical malaria. To determine whether Plasmodium-specific Th1- and Tfh-like effector cells generate memory populations that contribute to protection, we developed transgenic parasites that enable high-resolution study of anti-malarial memory CD4 T cells in experimental models. We found that populations of both Th1- and Tfh-like Plasmodium-specific memory CD4 T cells persist. Unexpectedly, Th1-like memory cells exhibit phenotypic and functional features of Tfh cells during recall and provide potent B cell help and protection following transfer, characteristics that are enhanced following ligation of the T cell co-stimulatory receptor OX40. Our findings delineate critical functional attributes of Plasmodium-specific memory CD4 T cells and identify a host-specific factor that can be targeted to improve resolution of acute malaria and provide durable, long-term protection against Plasmodium parasite re-exposure.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Imunidade Humoral , Memória Imunológica , Malária/imunologia , Plasmodium/imunologia , Células Th1/imunologia , Animais , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores OX40/metabolismo
18.
Proc Natl Acad Sci U S A ; 114(27): E5444-E5453, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28630327

RESUMO

Prostaglandin D2 (PGD2), an eicosanoid with both pro- and anti-inflammatory properties, is the most abundantly expressed prostaglandin in the brain. Here we show that PGD2 signaling through the D-prostanoid receptor 1 (DP1) receptor is necessary for optimal microglia/macrophage activation and IFN expression after infection with a neurotropic coronavirus. Genome-wide expression analyses indicated that PGD2/DP1 signaling is required for up-regulation of a putative inflammasome inhibitor, PYDC3, in CD11b+ cells in the CNS of infected mice. Our results also demonstrated that, in addition to PGD2/DP1 signaling, type 1 IFN (IFN-I) signaling is required for PYDC3 expression. In the absence of Pydc3 up-regulation, IL-1ß expression and, subsequently, mortality were increased in infected DP1-/- mice. Notably, survival was enhanced by IL1 receptor blockade, indicating that the effects of the absence of DP1 signaling on clinical outcomes were mediated, at least in part, by inflammasomes. Using bone marrow-derived macrophages in vitro, we confirmed that PYDC3 expression is dependent upon DP1 signaling and that IFN priming is critical for PYDC3 up-regulation. In addition, Pydc3 silencing or overexpression augmented or diminished IL-1ß secretion, respectively. Furthermore, DP1 signaling in human macrophages also resulted in the up-regulation of a putative functional analog, POP3, suggesting that PGD2 similarly modulates inflammasomes in human cells. These findings demonstrate a previously undescribed role for prostaglandin signaling in preventing excessive inflammasome activation and, together with previously published results, suggest that eicosanoids and inflammasomes are reciprocally regulated.


Assuntos
Coronavirus , Inflamassomos/metabolismo , Prostaglandina D2/metabolismo , Receptores de Prostaglandina/metabolismo , Transdução de Sinais , Animais , AMP Cíclico/metabolismo , Citocinas/metabolismo , Humanos , Inflamação/metabolismo , Interferon Tipo I/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Domínios Proteicos , Receptores de Prostaglandina/antagonistas & inibidores , Regulação para Cima
19.
J Virol ; 90(16): 7098-7108, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27226371

RESUMO

UNLABELLED: West Nile virus (WNV) is the most important cause of epidemic encephalitis in North America. Innate immune responses, which are critical for control of WNV infection, are initiated by signaling through pathogen recognition receptors, RIG-I and MDA5, and their downstream adaptor molecule, MAVS. Here, we show that a deficiency of MAVS in hematopoietic cells resulted in increased mortality and delayed WNV clearance from the brain. In Mavs(-/-) mice, a dysregulated immune response was detected, characterized by a massive influx of macrophages and virus-specific T cells into the infected brain. These T cells were polyfunctional and lysed peptide-pulsed target cells in vitro However, virus-specific T cells in the brains of infected Mavs(-/-) mice exhibited lower functional avidity than those in wild-type animals, and even virus-specific memory T cells generated by prior immunization could not protect Mavs(-/-) mice from WNV-induced lethal disease. Concomitant with ineffective virus clearance, macrophage numbers were increased in the Mavs(-/-) brain, and both macrophages and microglia exhibited an activated phenotype. Microarray analyses of leukocytes in the infected Mavs(-/-) brain showed a preferential expression of genes associated with activation and inflammation. Together, these results demonstrate a critical role for MAVS in hematopoietic cells in augmenting the kinetics of WNV clearance and thereby preventing a dysregulated and pathogenic immune response. IMPORTANCE: West Nile virus (WNV) is the most important cause of mosquito-transmitted encephalitis in the United States. The innate immune response is known to be critical for protection in infected mice. Here, we show that expression of MAVS, a key adaptor molecule in the RIG-I-like receptor RNA-sensing pathway, in hematopoietic cells is critical for protection from lethal WNV infection. In the absence of MAVS, there is a massive infiltration of myeloid cells and virus-specific T cells into the brain and overexuberant production of proinflammatory cytokines. These results demonstrate the important role that MAVS expression in hematopoietic cells has in regulating the inflammatory response in the WNV-infected brain.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Encéfalo/imunologia , Encéfalo/patologia , Células-Tronco Hematopoéticas/imunologia , Imunidade Inata/imunologia , Febre do Nilo Ocidental/patologia , Vírus do Nilo Ocidental/patogenicidade , Animais , Encéfalo/virologia , Proliferação de Células , Citocinas/metabolismo , Feminino , Citometria de Fluxo , Células-Tronco Hematopoéticas/metabolismo , Macrófagos/imunologia , Macrófagos/patologia , Macrófagos/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T/imunologia , Linfócitos T/patologia , Linfócitos T/virologia , Febre do Nilo Ocidental/imunologia , Febre do Nilo Ocidental/virologia
20.
Int J Infect Dis ; 47: 23-8, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27062985

RESUMO

The Middle East respiratory syndrome coronavirus (MERS-CoV) has infected over 1600 individuals with nearly 600 deaths since it was first identified in human populations in 2012. No antiviral therapies or vaccines are available for its treatment or prophylaxis. Approaches to the development of MERS vaccines are discussed herein, including a summary of previous efforts to develop vaccines useful against human and non-human coronaviruses. A striking feature of MERS is the important role that camels have in transmission. Camel vaccination may be a novel approach to preventing human infection.


Assuntos
Infecções por Coronavirus/prevenção & controle , Coronavírus da Síndrome Respiratória do Oriente Médio , Vacinas Virais , Animais , Camelus , Infecções por Coronavirus/virologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...